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ABSTRACT
We carry out a first systematic step in assessing, via multiparticle tracking simulations, the

effects of the beam-beam interaction for the APIARY 6.3D and APIARY 7.5 designs of PEP-II
when the nominal beam-beam parameters are not all equal. Specifically, we take two different
approaches in breaking the equality of these parameters: In the first one, we set ξ0x,+= ξ0y,+≡ ξ0+
and ξ0x,–= ξ0y,–≡ ξ0– with ξ0+≠ ξ0–. In the second, ξ0x,+= ξ0x,–≡ ξ0x and ξ0y,+= ξ0y,–≡ ξ0y
with ξ0x ≠ ξ0y. In both cases we maintain the pairwise equality of the rms beam sizes at the IP,
and we keep the nominal luminosity fixed at its nominal value, Ÿ0 = 3 × 1033 cm–2 s–1. Other
constraints are in effect, as explained in the text. Parasitic collisions with nominal beam separation
are included. In each approach there are different implications for bunch currents and emittances as
the beam-beam parameters move away from full equality. These implications are spelled out but
are not evaluated. We conclude that: (1) In both cases only the vertical beam blowup is significant,
and this blowup behaves smoothly as the beam-beam parameters move away from full equality. (2)
In the first approach, the dynamics favors ξ0+≈ 0.024, ξ0–≈ 0.04 over ξ0+= ξ0–= 0.03. (3) In the
second, the dynamics favors ξ0y ≈ 0.023, ξ0x ≈ 0.04 over ξ0x = ξ0y = 0.03. In either case, the
resultant value for the dynamical luminosity is ~10% higher than that corresponding to the fully-
symmetric case, while the total current of the low-energy beam approaches 3 A. Finally, we
present a conjecture for the behavior of the dynamics seen in the simulations.

1. Introduction
The PEP-II B factory design1,2 has been specified in such a way that all four nominal

beam-beam parameters are constrained to be equal. This specification is a particular choice for one
of the conditions of transparency symmetry.3,4 An important practical implication of this constraint
is that it reduces considerably the parameter space and hence simplifies the design. Furthermore,
this symmetry is generally thought to provide a prudent starting point for the design of asymmetric
colliders since it makes the beam-beam dynamics resemble that of symmetric, single-ring colliders
for which a body of experience exists. From the theoretical perspective, the situation is not
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completely settled: it has been argued, from general principles, that the global beam-beam limit
(understood to mean maximum integrated luminosity at a fixed overall cost) in an asymmetric
collider can only be reached under asymmetric conditions.5 On the other hand, a single-particle
hamiltonian analysis for round beams in the linear-lattice approximation leads to the conclusion that
the beam-beam limit is reached under a rather stringent, symmetric, set of conditions.6

In any case, the design of the B factory must strike a compromise among competing
requirements from different areas of the design. This compromise requires accommodating certain
constraints, such as those arising from single-particle nonlinear dynamics, synchrotron radiation
masking, etc., that may affect an idealized optimization of the beam-beam interaction. In fact, the
current design of PEP-II does not rigorously satisfy any set of transparency conditions. Early
simulation studies showed that a transparent-symmetric PEP-II design would have better luminosity
performance than a design in which the symmetry is badly broken.4 Since the current design breaks
the transparency symmetry to some extent, it seems natural to examine gradual departures from full
equality in the beam-beam parameters, since this equality that has so far been maintained.1,2,4,7–12

We stress that tracking simulations for the nominal designs for APIARY 6.3D and APIARY 7.5,
with ξ0x,+= ξ0y,+= ξ0x,–= ξ0y,–= 0.03, have shown acceptable dynamical luminosity, with Ÿ~2.6
× 1033 cm–2 s–1 for the former7 and Ÿ~2.8 × 1033 cm–2 s–1 for the latter.8 Thus we are not
motivated by an improvement in this sense. Rather, we would like to explore whether the beam
dynamics naturally favors other values for the beam-beam parameters. The conjecture is that, if
these parameters were chosen according to the preference expressed by the dynamics, the operation
of the machine would be smoother and its performance more reliable. Of course, there would be a
cost associated with this potential improvement. Neither the cost or the potential increase in
reliability are  investigated in this note.

In this note we present a first systematic, although far from complete, assessment of the
beam-beam effect on the luminosity performance of PEP-II for the interaction region (IR) designs
APIARY 6.3D and APIARY 7.5 with unequal beam-beam parameters. Specifically, we take here
two different approaches in breaking the equality of the beam-beam parameters: In approach A, we
set ξ0x,+= ξ0y,+≡ ξ0+ and ξ0x,–= ξ0y,–≡ ξ0– with ξ0+≠ ξ0–. In approach B, ξ0x,+= ξ0x,–≡ ξ0x and
ξ0y,+= ξ0y,–≡ ξ0y with ξ0x ≠ ξ0y. In both cases we maintain the pairwise equality of the rms beam
sizes at the interaction point (IP), and we keep the nominal luminosity fixed at its nominal value, Ÿ0
= 3 × 1033 cm–2 s–1. In approach B the transparency-symmetry constraint on the beam-beam
parameters is respected,4 but this is not the case in approach A. Other constraints are in effect, as
explained below. We present our results in the form of plots of the beam-beam-induced beam
blowup σ/σ0 vs. ξ0+ (approach A) or vs. ξ0y (approach B). Parasitic collisions (PCs) with nominal
beam separation are included in these multiparticle simulation studies. In each approach there are
different implications for bunch currents and emittances as the beam-beam parameters move away
from full equality. These implications are spelled out but are not evaluated.

We conclude that: (1) In both approaches only the vertical beam blowup is significant, and
this blowup behaves smoothly as the beam-beam parameters move away from full equality. (2) In
the first approach, the dynamics favors ξ0+≈ 0.024, ξ0–≈ 0.04 over ξ0+= ξ0–= 0.03. (3) In the
second, the dynamics favors ξ0y ≈ 0.023, ξ0x ≈ 0.04 over ξ0x = ξ0y = 0.03. In either case, the
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dynamical value of the luminosity is slightly increased from the values corresponding to ξ0x,+=
ξ0y,+= ξ0x,–= ξ0y,–= 0.03: for APIARY 6.3D the dynamical luminosity at the preferred values of
the ξ0 parameters is Ÿ~3.1 × 1033 cm–2 s–1 and for APIARY 7.5 it is Ÿ~2.9–3.3 × 1033 cm–2 s–1

(the dynamical value can be larger than the nominal value of 3 × 1033 cm–2 s–1 on account of the
“dynamical beta-function effect”).

An optimization study along the lines presented here, and an evaluation of the design and
cost implications of unequal beam-beam parameters, fall wholly outside the scope of this note.

2. Assumptions and constraints
All basic lattice and nominal beam parameters (for the case in which ξ0x,+= ξ0y,+= ξ0x,–=

ξ0y,–= 0.03) are listed in Table 1 (APIARY 6.3D) and Table 2 (APIARY 7.5). When the beam-
beam parameters are not all equal, the actual values of other parameters vary according to the
approach taken to break the equality of the beam-beam parameters, as explained below. Here are
our assumptions:

In all cases presented here we have looked at only one working point,* namely (νx ,νy ) =
(0.64, 0.57) for both beams, following the results of previous tune scans.2 We consider only the
linear approximation to the lattice, which is therefore fully described by the tunes, the lattice
functions at the IP and PCs, and the intervening phase advances. We imagine the lattice divided up
into two symmetrical “short” arcs, from the IP to each of the two PCs, and one “long” arc, from
one PC to the other. The lattice tune is set by adjusting the phase advance of the long arc; the phase
advances ∆ν of the short arcs are fixed.

The RF wavelength, λRF, is 0.6298 m, and we consider only the nominal value for the
bunch spacing, namely  sB = 2λRF = 1.2596 m. As a result, the collision frequency fc is also fixed
at its nominal value of 238 MHz, and the first PC occurs at a distance ∆s  = 0.6298 m from the IP.
The beam energy E, bunch length σ…, rms energy spread σE/E and synchrotron tune† νs are
different for the two beams. On the other hand, the horizontal and vertical damping times are equal
to each other and in the two beams. In the simulations we hold all these parameters fixed at their
nominal values, stated in Tables 1 and 2.

We maintain the restriction that the nominal rms beam sizes at the IP should be pairwise
equal, namely

σ0x,+=σ0x,–≡σ0x,         σ0y,+=σ0y,–≡σ0y (1)
                                                
*  This is the so-called “bare lattice” working point. The simulations here do not involve any form of tune
compensation.12

 † For historical reasons that are now irrelevant, we use a value of 0.0403 for the synchrotron tune of the
LEB. In fact, the CDR specifies a value of 0.05. In Ref. 8 it is shown that simulations with a value of
0.05 yields slightly better performance.
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although their actual numerical values may vary away from those listed in Tables 1 and 2 when the
beam-beam parameters are not all equal. The beta functions at the IP, however, remain fixed at their
nominal values throughout these studies,

βx+
*

=37.5 cm,     βx–
*

=75.0 cm

βy+
*

=1.5 cm,       βy–
*

=3.0 cm  
(2)

As mentioned above, we have followed two approaches to break the equality of the beam-
beam parameters, namely

Approach A:    ξ0x,+=ξ0y,+ ≡ξ0+,      ξ0x,–=ξ0y,–≡ξ0–,      ξ0+≠ξ0– (3a)
or

Approach B:    ξ0x,+=ξ0x,–≡ξ0x,      ξ0y,+=ξ0y,–≡ξ0y,      ξ0x≠ξ0y (3b)

In order to fully determine the primary set of four parameters σ0x, σ0y, N+ and N– under these
constraints, it turns out14 that we need three additional numerical inputs. We choose one of them to
be the nominal luminosity, which we fix at its nominal value,

  
Ÿ0

0 0

33

4
3 10= = ×+ −f

N N
c

x yπσ σ
cm s-2 -1

(4)

The remaining two inputs are the nominal beam-beam parameters ξ0+, ξ0– (Approach A) or ξ0x, ξ0y
(Approach B). As mentioned above, we present our simulation results by plotting beam blowup
against ξ0+ or ξ0y, depending on the approach. This means that ξ0+ or ξ0y is given in each run;
therefore the only additional parameter that needs to be specified is ξ0– or ξ0x. We have adopted the
prescription that this parameter is determined by

ξ0+⋅ ξ0–=0.032 (5a)
or

ξ0x ⋅ ξ0y=0.032 (5b)

depending on the approach taken. It should be emphasized that there are no a priori physical
reasons for this prescription. From the purely mathematical point of view, all algorithms that fix ξ0–
or ξ0x are equivalent, including specifications “by hand.” Of course, each algorithm entails
different sets of beam dynamics results and different implications for the other beam parameters. At
this stage of our studies, prescription (5) is an arbitrary but convenient choice; its only virtue is that
it allows a smooth extrapolation away from the nominal case, ξ0+= ξ0–= 0.03 or ξ0x = ξ0y= 0.03.

For each set of values of the nominal beam-beam parameters we determine the resultant
number of particles per bunch and nominal emittances, and we run a simulation. We use here the
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simulation code TRS,13 whose details are explained in Ref. 1. In the cases presented here we have
chosen 256 superparticles per bunch, divided into five slices in order to represent the thick lens
effects in the beam-beam interaction. We have run the simulations for 25,000 turns, or about five
damping times; the beam blowup is determined by averaging over the last 2,500 turns of the run.
The code was run on a Cray-2S/8128 computer at NERSC. Under these conditions (256
superparticles per beam, 5 slices and 25,000 turns), each run takes ~22 CPU min, and the CPU time
scales approximately linearly in any of these three variables in this parameter regime.

3. A note on transparency symmetry
In a basic form, transparency symmetry4 consists of four conditions, namely

(i) pairwise equality of nominal beam-beam parameters: ξ0x,+ = ξ0x,–
and ξ0y,+ = ξ0y,–

(ii) pairwise equality of nominal beam sizes at the IP: σ0x,+ = σ0x,– and
σ0y,+ = σ0y,–

(iii) equality of damping times of the two rings: τx+ = τx– and τy+ = τy–

(iv) equality of the tune modulation amplitudes due to synchrotron
oscillations: (σ…νs/β∗x)+= (σ…νs/β∗x)– and (σ…νs/β∗y)+= (σ…νs/β∗y)–

In our studies here conditions (ii) and (iii) are satisfied in both approaches. Condition (i) is
satisfied in approach B but not in approach A. Even in approach B, however, transparency is broken
because condition (iv) is not satisfied by the design: the parameters in Tables 1 or 2 violate these
equalities at the ~40% level,
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Therefore, transparency symmetry is never exactly satisfied in these simulations, nor in
most of the previous beam-beam simulation studies.1,2,4,7–12
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4. Determination of the nominal beam sizes and currents in each approach

4.1 Approach A: ξ0x= ξ0y but ξ0+≠ ξ0–

In this case it is easy to see that the inequality ξ0+≠ ξ0– subject to the constraints ξ0x= ξ0y,
Ÿ0 = 3 × 1033 cm–2 s–1 and ξ0+·ξ0–= 0.032 is achieved by simply changing the numbers of
particles per bunch at fixed nominal emittance in such a way that the product N+· N– remains fixed
at its nominal value, N+· N– = 21.833 × 1020. Thus in this approach the emittances remain constant
at their nominal values as the beam-beam parameters vary away from 0.03. Of course, the PC-
induced beam-beam parameters change because they depend on N±.

Explicitly, taking Eq. (5a) into account, the scaling relations are:

N+=5.630×1010× 0.03
ξ0,+

(7a)

N–=3.878×1010×
ξ0,+

0.03
(7b)

σ0x= constant =185.6 µm (7c)

σ0y= constant =7.4 µm    (7d)

The total beam currents resulting from the N’s and the σ’s are plotted in Fig. 3.

4.2 Approach B: ξ0+= ξ0– but ξ0x≠ ξ0y

In this case the variation of the beam-beam parameters away from complete equality entails
changes both in the number of particles per bunch and rms beam sizes. One finds14 the following
scaling formulas:

N±= N± nom.× f (ξ0y) (8a)

σ0x= σ0x nom.×
ξ0y

0.03
× f (ξ0y) (8b)

σ0y= σ0y nom.× 0.03
ξ0y

× f (ξ0y) (8c)

where the quantities in square brackets with the subscript “nom.” are the nominal design values,
i.e., those corresponding to ξ0x = ξ0y = 0.03 (Tables 1 or 2), and f(ξ0y) is the function

f (ξ0y) ≡
1+rβ

ξ0y

0.03
+0.03

ξ0y

rβ

(9)
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where rβ is the beta-function ratio,

rβ ≡
βy

*

βx
*

+

=
βy

*

βx
*

–

 (10)

Again, the total beam currents resulting from the N’s and the σ’s are plotted in Fig. 3. Now
since the beta function ratio is quite small for PEP-II (rβ = 0.04), the function f(ξ0y) can be
approximated by

f (ξ0y) ≈0.03
ξ0y

(11)

with an accuracy better than ~5% over the range of values of interest for the beam-beam parameter,
namely 0.02 Û ξ0y Û 0.05. Thus we find the following approximate scaling relations:

N±≈ N± nom.×0.03
ξ0y

     (12a)

σ0x≈constant= σ0x nom. (12b)

σ0y≈ σ0y nom.× 0.03
ξ0y

2
  (12c)

5. Discussion of the results
We now compare the results for the four cases by looking at the plots for the beam blowup

σ/σ0 vs. ξ0+ (Approach A) or vs. ξ0y (Approach B) for both designs. As mentioned earlier, we keep
the PC separation fixed at its nominal value, d = 2.82 mm for APIARY 6.3D or d = 3.5 mm for
APIARY 7.5.

Figure 1 shows the simulation results for beam blowup in approach A for both designs.
Figure 2 shows the corresponding results for approach B. In the plots the arrow labeled “nominal”
indicates the situation corresponding to ξ0x,+= ξ0y,+= ξ0x,–= ξ0y,–= 0.03. Both sets of results
show that the horizontal beam dynamics is not sensitive to the choice of beam-beam parameters
within the range of values we have chosen. The vertical dynamics, on the other hand, clearly prefers
unequal beam-beam parameters.

In approach A, the vertical beam blowup for APIARY 6.3D shows a minimum at
ξ0+≈ 0.023 which corresponds, according to Eq. (5a), to ξ0–≈ 0.039. Likewise, APIARY 7.5 shows
a minimum at ξ0+≈ 0.026. We do not understand the spikes in the blowup curves at ξ0+≈ 0.021;
we conjecture that these are caused by the excitation of a resonance. We do not understand why the
vertical blowup curve for APIARY 7.5 comes down to almost unity (i.e., almost nominal behavior)
at ξ0+= 0.020; for this value of ξ0+ the HEB experiences a beam-beam parameter ξ0–= 0.045,
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which seems rather substantial. In approach B (Fig. 2), APIARY 6.3D prefers ξ0y ≈ 0.023, ξ0x
≈ 0.039 and APIARY 7.5 prefers ξ0y ≈ 0.024, ξ0x ≈ 0.038.

As mentioned in Section 4, departures from full equality of the nominal beam-beam
parameters entail consequences for the currents and nominal emittances. Figure 3 shows the total
beam currents and nominal rms beam sizes at the IP plotted against ξ0+ or ξ0y, depending on the
approach. In translating the number of particles per bunch into total beam current we have assumed
that the beams have no gaps, i.e., we have assumed that each beam has 1746 identical bunches with
N± given by Eqs. (7a-b) or (8a). The results for the N’s and the σ0’s are the same for either design,
APIARY 6.3D or APIARY 7.5.

In approach A the rms beam sizes are constant when ξ0+ varies, as stated in Eqs. (7c-d), and
the HEB and LEB currents are proportional and inversely proportional to ξ0+, respectively. These
quantities are shown in the two left-hand side plots in Fig. 3. In approach B both the nominal rms
beam sizes and currents have nontrivial dependence on ξ0y, as stated in Eqs. (8). The set of Eqs. (8)
(not the approximations (12)) are plotted in the two right-hand side plots in Fig. 3.

Tables 3 and 4 summarize the results of modifying the designs of APIARY 6.3D and
APIARY 7.5 in such a way as to accommodate the above-mentioned preference expressed by the
dynamics seen in the simulations. Also listed is the dynamical luminosity in each case.

TABLE 3: Modified nominal beam-beam parameters, rms beam sizes at the IP and
total beam current in approach A, along with estimated dynamical luminosity.

APIARY 6.3D APIARY 7.5

LEB (e+) HEB (e–) LEB (e+) HEB (e–)

ξ0x 0.023 0.039 0.026 0.035

ξ0y 0.023 0.039 0.026 0.035

σ0x [µm] 186 186 186 186

σ0y [µm] 7.43 7.43 7.43 7.43

r ≡σ0y/σ0x 0.04 0.04

I [A] 2.8 1.1 2.5 1.3

Ÿ [cm–2 s–1] ~3.1 × 1033 ~3.3 × 1033

TABLE 4: Modified nominal beam-beam parameters, rms beam sizes at the IP and
total beam current in approach B, along with estimated dynamical luminosity.

APIARY 6.3D APIARY 7.5



9

LEB (e+) HEB (e–) LEB (e+) HEB (e–)

ξ0x 0.039 0.039 0.038 0.038

ξ0y 0.023 0.023 0.024 0.024

σ0x [µm] 181 181 182 182

σ0y [µm] 12.3 12.3 11.4 11.4

r ≡σ0y/σ0x 0.068 0.063

I [A] 2.7 1.9 2.6 1.8

Ÿ [cm–2 s–1] ~3.1 × 1033 ~2.9 × 1033

6. A possible qualitative explanation
In order to try to gain some qualitative understanding of the vertical blowup plots in Fig. 1,

we have tried to correlate them with the total nominal beam-beam parameters, which are plotted in
Fig. 4. Each one of the four total nominal beam-beam parameter is defined to be

ξ0,tot ≡ ξ0 +2ξ0,PC (13)

where ξ0 is the nominal beam-beam parameter at the IP (e.g., any of the parameters ξ0+, ξ0–, ξ0y,
or ξ0x) and ξ0,PC is the beam-beam parameter induced by the first parasitic collision. ξ0,tot is the
total beam-beam parameter experienced by a particle at the center of the bunch in one turn. The
factor 2 in front of ξ0,PC accounts for the fact that each bunch experiences two PCs per turn, one
on either side of the IP.

In approach A, as seen in the two left-hand side plots in Fig. 4, the two total beam-beam
parameters of the LEB (solid and dotted lines) are proportional to ξ0+, while those of the HEB
(dashed and dot-dashed lines) are inversely proportional to ξ0+. Because of the opposite functional
dependence, the curves necessarily cross. The crossing point corresponds to the situation where
neither beam is “strong” or “weak,” i.e., the two beams are balanced. By equating the expressions
for ξ0y+,tot and ξ0y–,tot (intersection of the dotted and dot-dashed lines) we find an expression for
the balance point for the vertical dynamics,

ξ0+,bal = ξ0 nom × 
ξ0y–,tot

ξ0y+,tot nom

 

(14)

where the quantities inside the square brackets with the subscript “nom” are those that correspond
to ξ0+= ξ0–= 0.03. For APIARY 6.3D we obtain, from Table 1,

APIARY 6.3D:    ξ0+,bal = 0.03× 0.0347
0.0482

 
 = 0.0255 (15)

while for APIARY 7.5 we obtain, from Table 2,
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APIARY 7.5:      ξ0+,bal = 0.03× 0.0331
0.0424

 
 = 0.0265 (16)

These balance points correlate well with the minima in the vertical blowup curves exhibited by the
simulation results in Fig. 1. It seems reasonable to conjecture that, in general, the balance point
would yield optimum performance, under the approximations in effect in our studies.

We must point out that, in this approach, the fact that ξ0+,bal is different from the nominal
value 0.03 is due to the inequality of the beta functions at the IP. If the design were such that β∗y,+
= β∗y,– then the beta functions at the PC would also be equal.* Consequently ξ0y+,tot =ξ0y–,tot
would obtain, and Eq. (14) would then yield ξ0+,bal = 0.03.

In approach B the total vertical beam-beam parameters for the two beams scale together, and
do not cross. However, the total vertical and horizontal beam-beam parameters for each beam do
cross, and it seems reasonable that this crossing should be declared the balance point within this
approach. A calculation for the LEB, using the approximation given by Eq. (11) for f(ξ0y) yields,
for the equality of ξ0y+,tot and ξ0x+,tot (intersection of the dotted and solid lines),

ξ0y,bal ≈ ξ0 ξ0+2ξ0x+,PC–2ξ0y+,PC nom
 

(17)

By using the entries from Tables 1 and 2 we obtain the numerical values

APIARY 6.3D:    ξ0y,bal ≈ 0.03× 0.03+2× – 0.000544 – 0.009097
 
 =0.0179    (18)

 
 

APIARY 7.5:       ξ0y,bal ≈ 0.03× 0.03+2× – 0.000336 – 0.006200
 
 =0.0225    (19)

which, again, correlate well with the minima in the vertical blowup curves for the simulations for
approach B shown in Fig. 1. In this approach, the balance point would be nontrivial (i.e., different
from 0.03) even if β∗y,+ = β∗y,–.

7. Conclusions
We have carried out only two studies of departures from full equality of the beam-beam

parameters for PEP-II. We have constrained the two approaches so that there is only one free
parameter, and we have not attempted any sort of optimization along these lines. In particular, we
have maintained the beta functions at the IP at their nominally-specified values.

Because of the nature of the approximations involved in these studies, we cannot guarantee
the validity of the quantitative details of the results in Figs. 1 and 2. Nevertheless it seems clear,
from the overall qualitative features of the results, that the beam dynamics prefers unequal over
equal beam-beam parameters.

                                                
*  This would be exactly true for APIARY 7.5 but only approximately true for APIARY 6.3D.
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Under the constraints of approach A, the preference is for a smaller beam-beam parameter
for the LEB than for the HEB. We conjecture that this preference is probably due to the inequality
of the PC-induced beam-beam parameters. This inequality, in turn, is a consequence of the
inequality of the beta functions at the IP, β∗y,+ ≠ β∗y,–. If the PEP-II design were changed within
the constraints of this approach in order to satisfy the preference expressed by the beam-beam
dynamics, the total beam currents would need to be ~1.1–1.3 A and ~2.5–2.8 A for the HEB and
LEB, respectively, and the nominal rms beam sizes would remain unaltered from the nominally-
specified values.

Under the constraints of approach B, the preference is for a vertical beam-beam parameter
that is smaller than the horizontal. This result is qualitatively consistent with the operational
experience of existing colliders such as CESR.15  If the PEP-II design were changed within the
constraints of this approach in order to satisfy this preference, the total beam currents would be
~1.8–1.9 A and ~2.6–2.7 A for the HEB and LEB, respectively, and the nominal rms beam sizes at
the IP would be σ0y ~11–12 µm and σ0x ~181–182 µm. We conjecture that this preference would
still hold true in a more symmetric case, with β∗y,+ = β∗y,–.

In either approach, the total current of the LEB becomes significantly larger than its value of
2.15 A for the fully-symmetric case (ξ0x,+= ξ0y,+= ξ0x,–= ξ0y,–= 0.03) at the point preferred by
the dynamics. And, in approach B, the HEB current approaches 2 A, which should be compared to
1.5 A in the fully-symmetric case. The estimate for the dynamical luminosity from the simulations
is Ÿ Ö 3 × 1033 cm–2 s–1. It is slightly larger than the nominal value, Ÿ0 = 3 × 1033 cm–2 s–1, on
account of the dynamical beta-function effect: a calculation shows that all four dynamical beta
functions at the IP are smaller than the nominal ones for the working point we have chosen.16 If the
emittances did not blow up, or if they blew up by a small amount, Ÿ would be dominated by the
dynamical beta-function effect, and would be larger than Ÿ0. This is undoubtedly the explanation of
our simulation results.
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TABLE 1

APIARY 6.3D PRIMARY PARAMETERS
Nominal CDR case;   Ÿ0 = 3 × 1033 cm–2 s–1;   ξ0 = 0.03

LER (e+ ) HER (e–)

Ÿ0 [cm–2 s–1] 3 × 1033

C [m] 2199.32 2199.32

E [GeV] 3.1 9.0

sB [m] 1.2596 1.2596

fc  [MHz] 238.000

VRF [MV] 8.0 18.5

fRF [MHz] 476.000 476.000

φs [deg] 170.6 168.7

α 1.15 × 10–3 2.41 × 10–3

νs 0.0403 0.0520
σ… [cm] 1.0 1.0

σE/E 1.00 × 10–3 0.616 × 10–3

N 5.630 × 1010 3.878 × 1010

Ι [Α] 2.147 1.479

ε0x [nm-rad] 91.90 45.95

ε0y [nm-rad] 3.676 1.838

β*x [m] 0.375 0.750

β*y [m] 0.015 0.030

σ∗0x [µm] 185.6 185.6

σ∗0y [µm] 7.426 7.426

τx [turns] 5,014 5,014

τy [turns] 5,014 5,014
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TABLE 1 (contd.)

APIARY 6.3D IP AND PC PARAMETERS
Nominal CDR case;   Ÿ0 = 3 × 1033 cm–2 s–1;   ξ0 = 0.03

LER (e+) HER (e–)

∆s [cm] a) 62.9816

d [mm] a) 2.82

IP 1st PC IP 1st PC

∆νx a) 0 0.1643 0 0.1111

∆νy a) 0 0.2462 0 0.2424

βx [m] 0.375 1.51 0.750 1.30

βy [m] 0.015 25.23 0.030 13.01

αx 0 –2.42 0 –1.06

αy 0 –29.25 0 –18.74

σ0x [µm] 185.6 372.4 185.6 244.4

σ0y [µm] 7.426 304.5 7.426 154.6

σ0x’ [mrad] 0.495 0.646 0.248 0.274

σ0y’ [mrad] 0.495 0.353 0.248 0.223

d/σ0x 0 7.570 0 11.538

ξ0x 0.03 –0.000544 0.03 –0.000234

ξ0y 0.03 +0.009097 0.03 +0.002345

ξ0x,tot b) 0.0289 0.0295

ξ0y,tot b) 0.0482 0.0347

a) The first PC occurs at a distance ∆s and at a phase advance ∆ν from the IP. At
this point the nominal orbits are separated horizontally by a distance d.

b) The total nominal beam-beam parameter is defined to be ξ0,tot≡ξ0
(IP)

+2ξ0
(PC)

.
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TABLE 2

APIARY 7.5 PRIMARY PARAMETERS
Nominal DU case;   Ÿ0 = 3 × 1033 cm–2 s–1;   ξ0 = 0.03

LER (e+ ) HER (e–)

Ÿ0 [cm–2 s–1] 3 × 1033

C [m] 2199.32 2199.32

E [GeV] 3.1 9.0

sB [m] 1.2596 1.2596

fc  [MHz] 238.000

VRF [MV] 8.0 18.5

fRF [MHz] 476.000 476.000

φs [deg] 170.6 168.7

α 1.15 × 10–3 2.41 × 10–3

νs 0.0403 0.0520
σ… [cm] 1.0 1.0

σE/E 1.00 × 10–3 0.616 × 10–3

N 5.630 × 1010 3.878 × 1010

Ι [Α] 2.147 1.479

ε0x [nm-rad] 91.90 45.95

ε0y [nm-rad] 3.676 1.838

β*x [m] 0.375 0.750

β*y [m] 0.015 0.030

σ∗0x [µm] 185.6 185.6

σ∗0y [µm] 7.426 7.426

τx [turns] 5,014 5,014

τy [turns] 5,014 5,014
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TABLE 2 (contd.)

APIARY 7.5 IP AND PC PARAMETERS
Nominal DU case;   Ÿ0 = 3 × 1033 cm–2 s–1;   ξ0 = 0.03

LER (e+) HER (e–)

∆s [cm] a) 62.9816

d [mm] a) 3.498

IP 1st PC IP 1st PC

∆νx a) 0 0.1645 0 0.1112

∆νy a) 0 0.2462 0 0.2424

βx [m] 0.375 1.433 0.750 1.279

βy [m] 0.015 26.46 0.030 13.25

αx 0 –1.680 0 –0.840

αy 0 –41.988 0 –20.994

σ0x [µm] 185.6 362.9 185.6 242.4

σ0y [µm] 7.426 311.9 7.426 156.1

σ0x’ [mrad] 0.495 0.495 0.248 0.248

σ0y’ [mrad] 0.495 0.495 0.248 0.248

d/σ0x 0 9.639 0 14.429

ξ0x 0.03 –0.000336 0.03 –0.000150

ξ0y 0.03 +0.006200 0.03 +0.001553

ξ0x,tot b) 0.0293 0.0297

ξ0y,tot b) 0.0424 0.0331

a) The first PC occurs at a distance ∆s and at a phase advance ∆ν from the IP. At
this point the nominal orbits are separated horizontally by a distance d.

b) The total nominal beam-beam parameter is defined to be ξ0,tot≡ξ0
(IP)

+2ξ0
(PC)

.


